Control (Based on WPI RBE 502 course)

0. 控制的目的

  • High level与low level
  • High level: 位置控制position control, 显式力控force control, 阻抗控制impedance control
  • Low level:
    • 应用电机进行驱动时,控制目标又可以分为
      • 位置控制:转到某一具体角度
      • 速度控制:以某个角速度旋转
      • 力矩控制:控制电机的出力(电流)
    • 电机控制方法: SimpleFOCDocs 【自制FOC驱动器】深入浅出讲解FOC算法与SVPWM技术 Teaching old motors new tricks
      • PWM方波控制
      • SPWM电压正弦控制
      • FOC磁定向矢量控制
        • 三个PID环:电流环 -> 速度环 -> 位置环
          • 电流(产生力矩,进而产生加速度)-> 加速度积分为速度 -> 速度积分为位置?
          • 电流环为控制电机的基础(直接产生力矩),如果需要对速度进行控制,则需要通过对扭矩的不断调节达到预期的转速 如果需要对位置进行控制,则需要不断对速度进行调整从而完成对位置的跟踪。 低速运动时跳过速度环 对位置的检测由脉冲编码器完成,对速度的检测实际是由脉冲编码器的差分(位置差分)得到?

1. Euler-Lagrange modeling

  • The Lagrangian:

    • : the total kinetic energy, e.g. , . 动能。
    • : the potential energy, e.g. , might be negative (depends on the coordinate) (have a lower limit?). 势能。
    • : constraints (not necessary, why?)
  • Eular-Lagrangian equations: . Lagrange: 在初始时刻建立坐标来标记质点ref Eular: 随着质点的变化以当前状态作为参考标记质点 方程表明了两种坐标系如何转换 is the generalized force performing work on the -th coordinate. (Gravity is not a gneralized force, counted by ) 搞清这俩参照系怎么回事

  • 结论: or

    • : , positive definite
    • : Coriolis force科里奥利力, . is skew-symmetric ()
    • : gravity

2. State space

  • 简化问题以便求解:把高阶系统(多次求导,如速度加速度)表示为一阶系统(加速度是速度的差分,速度是位置的差分,将多个state合并写作向量形式,state之间的关系从等式组改写成矩阵形式);若条件适当,将非线性系统转化为线性系统(->)。期望的最终形态表示一个控制系统。 如为三阶系统。令state space form,则 即把一个三阶方程简化为了一阶方程,用矩阵表示了state space中state的内在联系(如导数组成的线性方程组)
  • Matlab ODE只可求解一阶ODE,必须将高阶系统转化为一阶系统才可求解

3. ODE

  • 通过特定算法选择每次递进的步长,使得与实际的误差小于给定的阈值。从而用多条线段逼近曲线进行求解

4. System type:

linearnonlinear
parameter-varyingLPV
time-varyingLTV
where
are arbitrary nonlinear functions
time invariantLTI
If we have inputs ()
and outputs (), we still have above system,
with
autonomous time invariant

5. Stability

5.1. In general

A general nonlinear, time varying and autonomous system for time t and state vector x. (Images are from math24)

stable typecondition
Stability, 稳定Let be a solution to the differential equation with initial condition . A solution is stable if other solutions starting near stay close to

附近时若收到扰动,结果还在其附近的受限范围内
![[learning_note/1.theory/control/zz.attachment/lyapunov-stability.svg
Asymptotically stable, 渐进稳定Stable and for is sufficiently close to , where and are two different initial states.

附近时若收到扰动,结果会逐渐回到
![[learning_note/1.theory/control/zz.attachment/asymptotically-stability.svg
Global asymptotically stability (G.A.S.)
在全局任意位置,都会去到
Exponential stability ( A.S.)
渐进稳定,接近速度用自然对数规定
![[learning_note/1.theory/control/zz.attachment/exponential-stability.svg
  • linear system:
    • Asymptotically stable G.A.S.
    • Exp. stable = A.S.
  • Nonlinear system:
    • A.S. G.A.S.
  • General
    • Exp. stable A.S.
  • 稳定之间的关系 Stable Asymptotic stability Exponential stability

5.2. Stability of a linear system

  • A solution of the system , is
    ↳A solution of the system is
  • ODE判断稳定性的缺点:ODE计算耗时,并且需要计算无限的长度
  • 由矩阵特征值与特征向量可知,可写成
    ,则有,一个可能解为。所以稳定性取决于的实部和0的关系。所以系统的稳定性取决于 矩阵的特征值
  • 举例:二阶系统
    • 系统模型为 典型表达式(拉普拉斯变换后在s域上为),其中是natural frequency,是damping ratio,参考。(拉普拉斯域中即为
    • 的形式可以表示做。则, 解出eigen value是
    • 由上可知矩阵A的特征值是传递函数的极点。共轭虚根无阻尼,共轭复根欠阻尼,两个相等负实根临界阻尼,两个不相等负实根过阻尼)(知乎)。

5.3. Stability of a LTI system

The linear system is

stable typerequirement
asymptotically stableat the equilibrium iff ,
marginally stableat the equilibrium iff ,
unstableiff ,
  • LTI系统的Asmp. stable = Exp. stable(asyptotically, exponential)

5.4. Equilibrium

  • A special case of solution
    • An equilibrium is locally stable if the solution starting close to the equilibrium is stable.
    • An equilibirium is locally asymptotically stable if the solution starting close to the equilibrium is locally asymptotically stable (Do we need the locally here?).
    • Globally stable / asymptotically stable equilibrium: (?)

5.4.1. Direct method: solve the ODE

和Lyaponuv direct method的区别与联系?

  • LTI system:
    • For a scalar system , the solution is .
    • For a linear system , for is a matrix, the solution is

5.5. Lyapunov stability

5.5.1. Lyapunov indirect method:

  • Linearizing the system around the original

5.5.2. Lyapunov direct method:

  • 小潘Find a Lyapunov function (candidate), satisfy:

  • MITLet be a continuous map from to , then is called a locally positive definite (lpd) function around if

  • RBE502 slides: stability using Lyapunov function:

    • , energy is always nonnegative. 能量不会增加
    • , lowest energy at the stable equilibrium. 稳定点能量为零
    • , the energy is non increasing. or , the energy is decreasing strictly.
  • Lyapunov function的选取

    • 根据物理意义知乎

      EnergyMechanicalElectrical
      Kinetic
      (active)
      Mass/Inertia
      Inductor
      Potential
      Gravity:
      Spring:
      Capacitor
      Dissipative
      Damper/Friction
      Resistor
    • 其它

    • 待整理12

  • Lyapunov function和系统模型的关系? E.g. 一个物理系统包含,那么可以动能+势能就是该系统的一个Lyapunov方程,动能为0势能最低即稳定。将state代入可以检验该状态是否是一个稳态。

6. 能达性和能控性 Reachability and controllability

7. Set-point tracking 和 trajectory tracking

  • 到达一个设定值或跟踪一条路径
  • set-point tracking
  • Trajectory tracking desired trajectory

8. Jacobian linearization

一个曲面上各个方向上的梯度