浮点数精度 §
1. 实例1: §
- 开平方的位置不同,使得实际储存的数值大于理论上应得的结果,带入其他函数后因输入越界出现错误
下例中最后一个b略大于1,导致acos(b)报错
# The inaccuracy of the floating point makes you not being able to calculate the correct angle between two vectors
from math import acos, sqrt
def angle_1(ux, vx, uy, vy):
eq = (ux*vx+uy*vy)/(sqrt(ux**2+uy**2)*sqrt(vx**2+vy**2))
return eq
def angle_2(ux, vx, uy, vy):
eq = sqrt((ux*vx+uy*vy)**2/((ux**2+uy**2)*(vx**2+vy**2)))
return eq
ux = 195
vx = 208
uy = -225
vy = -240
a = angle_1(195, 208, -225, -240)
b = angle_2(195, 208, -225, -240)
print '%.20f' % a
print acos(a)
print '%.20f' % b
print acos(b)
a = angle_1(287, 308, -82, -88)
b = angle_2(287, 308, -82, -88)
print '%.20f' % a
print acos(a)
print '%.20f' % b
print acos(b)
2. 实例2: §