Formal method (Based on WPI RBE 595)

tag:#formalmethod

1. Formal specification

1.1. Propositional logic

  • Proposition: true or false

  • Atomic proposition (AP): the true or false does not depend on any other proposition e.g.: 现在路口是绿灯

  • Logic connectives:

    • ”: ‘AND’, : ‘OR’. : Negation

    • : Implication

      Example

      运算顺序为从左至右,即 A: If it is a bear. 它是熊 B: then it can swim. 它会游泳 1. If A is false (it is not a bear), it might be able to swim (a fish) or not (a bird). 如果不是熊的话(A为false),可能会游泳也可能不会(比如是鱼或者是鸟),所以不是熊可以推出两种情况皆有可能(B既可能是true也可能是false)。 It can swim -> B=T It cannot swim -> B=F A false statement implies anything 2. If A is true (which it is a bear), it can swim (B=T). 如果是熊,一定会游泳

    • A and B does not necessary to have causal relationship (example)

    • : Equivalence

    0010011
    0110110
    1000100
    1101111
  • Quantification:

    • : Existential
    • : Universal

1.2. First-order logic一阶逻辑

  • 通过运算符()和量化()将AP连接起来

1.3. Temporal logic时序逻辑

  • Temporal operator(check wiki):

    SymbolSymbolmeaning
    XNext
    UUntil
    FEventually in the future
    GAlways
  • E.g.: 例如有一个AP set 可以是

    1. 其中的任意一个AP (如,避免直接表示成
    2. 通过公式中提供的逻辑操作符()运算后定义(如),
    3. 嵌套定义(如
  • Practical properties in LTL

    • Reachability:
      • : simple reachbility
      • : conditional reachability
    • Safety
      • : invariant
    • Liveness
      • and others
    • Fairness
      • and others

2. Automata

2.1. A finite-state semi-automaton:

  • : A finite set of states
  • : A finite set of symbols (words,相当于自动机的“程序”)
  • : A nondeterministic transition function
  • 没有指定开始状态,也没有指定终止状态

2.2. A finite-state automaton:

  • : An initial state
  • : A set of final states
  • Büchi: An infinite word is accepted if it results in a run to visit infinitely often. (无限长的word,时不时就会经过终态)
  • Regular: A finite word is accepted if it results in a run to ONE of the final states (有限长的word,最终抵达终态)
  • Deterministic finite automaton (DFA) is a singleton
  • : Language The set of words accepted by the automaton.

2.2.1. Regular languages正则语言

  • Kleene star 闭包

    • 对集合内的符号进行有限次的串接(包括不对任何符号进行串接,即空集) E.g.:
    • 两层用途:
      1. Given a set , get the set by concatenating words from finitely many times,. Includes the empty set. (所有能匹配的字符串,每个字符串中words为有限数个)
      2. Given a set of words (strings), the smallest superset of it (??没有出现在课件里??)(反之)
  • A run is accepting if . E.g.: 001/110/etc.

  • A word is accepting if it triggers an accepting run. E.g.: 0010 (?终止状态一定是从它出发的又会回到它么?)

2.2.2. -regular languages

  • Given a set , the set are obtained by concatenating words from infinitely many times. e.g.:

2.2.3. Deterministic vs. nondeterministic

  • What’s the difference?
    • Nondeterministic (NFA, nondetereministic finite automaton) 在某个state ,给定一个word ,可能到达,也可能到达 E.g.: 从状态0出发,执行word a,可能到状态1或状态3

    • Determinization

    • 任意NFA均可转化为DFA(?) For any nondeterministic automaton with regualr acceptance condition, there exists a deterministic automaton with regular acceptance condition accepting the exact set of words

    • Non-deterministic Buchi are more expressive than deterministic Buchi. non-DBA的Language不能全部被DBA接受

      • There exist nondeterministic Buchi automata whose languages cannot be accepted by a deterministic Buchi automation
    • powerset幂集: 所有属于给定集合的子集(从空集到这个集合本身)。集合的powerset共个子集。

      Example

      If S is the set , then the subsets of S are (also denoted {)

2.2.4. Fragment of LTL=DBA(?)

3. Transition systems and compositions

reader_software_specification_ch_8 some related slides another related slides

3.1. Finite state transition system

  • A finite state transition system TS is a tuple
    • : a finite set of states.
    • : a finite set of actions.
    • : a finite set of transitions.
    • : a finite set of initial states.
    • : a finite set of atomic propositions.
    • : a labeling function.

3.2. Predecessors and successors

  • a-successor of s:
  • a-predecessor of s:
  • A state is terminal iff

3.3. Deterministic transition system (TS)

  • 两层含义

    • Action-determinisitic If and for all , it holds that . For all actions and states, it has at most one suceessor state (至多有一个初始状态(为什么要限制?),并且从任意一个state执行的任意一个action最多有一个后续状态)ch. 8
    • AP-determinisitic If for all the following conditions hold: and for all 每个AP(原子命题)至多有一个初始状态,并至多有一个后续(post)状态。需要确认?
  • Notation: for determinisitic transition function,

3.4. Interleaving of transition systems

  • , Transition relation is defined by and

3.5. Handshaking

  • , Transition relation is defined by
    1. If , , and , then
    2. If , and , then
    3. If , and , then

3.6. Transition system and LTL specification

???

4. LTL verification of transition systems

4.1. Basic properties:

  • Invariant: 一些状态恒为true/false(一些条件应始终成立/不成立)??

    Example

    十字路口交通灯,AP南北向为绿灯,AP东西向为绿灯,记绿灯为g,红灯为r。 即为一系列红绿灯状态的组合。如:从任意一个时刻开始,记录一段时间(任意长时间)路口红绿灯的变化: (rg) —> (rr) —> (gr) —> (rr) —> (rg) —> …(红绿灯交替,不存在同时同时绿灯,变灯时可能出现同时红灯),因为-Regular中包含任意有限长度的组合。 当交通灯的规则为,即不会同时出现绿灯/始终只有一红一绿或两红时,将任意中的元素代入交通灯规则,都为true(?),所以对此规则是满足invariant的

    - Reachable state
  • Safety: 一些状态恒为false(确保一些情况不会发生),e.g.: 路口两个方向不会同时为绿灯。

  • Liveness:一些状态在一定情况下会发生,e.g.:路口会变绿灯。

4.2. Product of TS and Automaton

  • Transition system , automaton
Transition systemAutomaton
State
: Action
Transition
Initial
: a set of AP
: the labeling function: Input symbols
(the same ):the set of accepting state

待进一步检查的StackExchange上的Example

Ref: StackExchange

  1. 首先找出新的initial set: ,所以有,新的initial set为

  2. 新的transition的定义为 也就是对于TS中的进行一次状态转移(状态转移的label 通常被忽略),到达新的状态,用于表示状态的label作为自动机的输入,驱动自动机从状态转移到其下一状态的下一状态为,标签为在接受作为输入后转移至,所以的后续状态为

  3. 后续计算为:

    inote
    0
    1
    2



     
    3



     
    4
     


    ???

google

ch 4 p166, figure 4.6

German trafic light system (Principles of model checking, chapter 4, p162, p166):

  • Traffic light example (bad prefix: p112, traffic light example: p113)
    1. A safety property for a traffic light常见的交通灯的安全属性:

      1. 至少有一个灯是亮着的 The bad prefixes: finite words contain . A minimal bad prefix在执行完一个有限长度的word时灯都不亮
      2. 不会同时亮两盏灯 Bad prefixes: words containing sets such as {red, green}, {red, yellow}, and so on. A minimal bad prefixes ends with such sets. 在一个有限长度的word执行完后有两个或两个以上的灯亮
    2. 假设/{ }为green,并且只保证以下的安全属性(上述两种情况中第一种由现在假设的AP的特性保证:红黄灯不亮时绿灯必亮;忽略第二种,即红黄灯可以同时亮,但是绿灯不会和其它灯同时亮) ,包括四个input symbols

      • ◎表示终结态

      • 红绿灯应满足的条件:在变红灯之前应有一段黄灯 例如不正确的words:{ } {red}。绿灯后立刻红灯

      • 对应的finite automaton for the minimal bad prefixes of a regular safety property. (若设计一个NFA,接受minimal bad prefixes)(P113,P162) 原书p113图3.9有误,参见errata (2010 July)。 从q1到q1的yellow包括了words: 从q1到q0的¬yellow包括words:

        Here, ¬yellow should be read as either or {red}.

        从q0到q1的yellow∧¬red即 从q0到q0为¬red∧¬yellow,即 从q0到qF的red包括了words:

    3. German traffic light (GermanTrLight) P166

      • TS: four states with the usual transitions

        1. red -> red+yellow, 2) red+yellow -> green, 3) green -> yellow, 4) yellow -> red (note relevant, omitted) Label: L(red)={red}, L(yellow)={yellow}, L(green)==L(red+yellow).
        Transition systemAutomaton
        State: {red, red+yellow, green, yellow}:
        q0: {{ }1,{red}}
        q1: — {{yellow},{yellow,red}}
        : Action
        Transition
        Initial
        : {red,yellow}
        : {00, 01,10,11}: Input symbols
        (the same ):the set of accepting state
      • 原书(“Principles of model checking”)在P113及P166页对safety的条件叙述不一致,GermanTrLight允许同时出现red+yellow,但是在第三章中不允许出现。解决方案: 1. 将TS中red->red/yellow改为red->yellow。将red+yellow视为不安全状态(ref: Another traffic light example,slides 12) 2. 修改NFA,将q0->q1的输入改为,将q0->qF的输入改为,这样不会进入终态(下图采用这种解决方案,注意NFA与上面的图的区别) 3. 修改NFA,将q0->q0的输入改为,相乘后

      1.Note: { } stands for green

      1. 首先找出新的initial set: ,所以有,新的initial set为

      2. 新的transition的定义为 也就是对于TS中的进行一次状态转移(状态转移的label 通常被忽略),到达新的状态,用于表示状态的label作为自动机的输入,驱动自动机从状态转移到其下一状态的下一状态为,标签为在接受作为输入后转移至,所以的后续状态为

      3. 后续计算为:

        inote
        0
        1
        2
        3back to

      ref: Transition System to Buchi Automaton Translation

CSDN

5. Probabilistic modeling checking with Markov Decision Processes

value function, value iteration, Bellman optimality equation, Q-function, asychronous value iteration

  • Linear programming formulation 转化成线性规划问题 . where is a probability distribution over ** the contraction is monotonic? What does it mean?**
  • The dual problem对偶问题

6. Reactive synthesis

one-shot或repeated博弈

7. Abstraction of continuous systems

SOS: sum of squares