Formal method (Based on WPI RBE 595)
tag:#formalmethod
1. Formal specification
1.1. Propositional logic
-
Proposition: true or false
-
Atomic proposition (AP): the true or false does not depend on any other proposition e.g.: 现在路口是绿灯
-
Logic connectives:
-
”: ‘AND’, : ‘OR’. : Negation -
: Implication Example
运算顺序为从左至右,即
A: If it is a bear. 它是熊 B: then it can swim. 它会游泳 1. If A is false (it is not a bear), it might be able to swim (a fish) or not (a bird). 如果不是熊的话(A为false),可能会游泳也可能不会(比如是鱼或者是鸟),所以不是熊可以推出两种情况皆有可能(B既可能是true也可能是false)。 It can swim -> B=T It cannot swim -> B=F A false statement implies anything 2. If A is true (which it is a bear), it can swim (B=T). 如果是熊,一定会游泳 -
A and B does not necessary to have causal relationship (example)
-
: Equivalence
0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 -
-
Quantification:
: Existential : Universal
1.2. First-order logic一阶逻辑
- 通过运算符(
, , , , )和量化( , )将AP连接起来
1.3. Temporal logic时序逻辑
-
Temporal operator(check wiki):
Symbol Symbol meaning X Next U Until F Eventually in the future G Always -
E.g.:
例如有一个AP set , 可以是 - 其中的任意一个AP
(如 、 、 ,避免直接表示成 ) - 通过公式中提供的逻辑操作符(
, , , )运算后定义(如 ), - 嵌套定义(如
)
- 其中的任意一个AP
-
Practical properties in LTL
- Reachability:
: simple reachbility : conditional reachability
- Safety
: invariant
- Liveness
and others
- Fairness
and others
- Reachability:
2. Automata
2.1. A finite-state semi-automaton:
: A finite set of states : A finite set of symbols (words,相当于自动机的“程序”) : A nondeterministic transition function - 没有指定开始状态,也没有指定终止状态
2.2. A finite-state automaton:
: An initial state : A set of final states - Büchi: An infinite word
is accepted if it results in a run to visit infinitely often. (无限长的word,时不时就会经过终态) - Regular: A finite word
is accepted if it results in a run to ONE of the final states (有限长的word,最终抵达终态) - Deterministic finite automaton (DFA)
is a singleton : Language The set of words accepted by the automaton.
2.2.1. Regular languages正则语言
-
Kleene star
闭包 - 对集合内的符号进行有限次的串接(包括不对任何符号进行串接,即空集)
E.g.:
- 两层用途:
- Given a set
, get the set by concatenating words from finitely many times,. Includes the empty set. (所有能匹配的字符串,每个字符串中words为有限数个) - Given a set of words (strings), the smallest superset of it (??没有出现在课件里??)(反之)
- Given a set
- 对集合内的符号进行有限次的串接(包括不对任何符号进行串接,即空集)
E.g.:
-
A run
is accepting if . E.g.: 001/110/etc. -
A word
is accepting if it triggers an accepting run. E.g.: 0010 (?终止状态一定是从它出发的又会回到它么?)
2.2.2. -regular languages
- Given a set
, the set are obtained by concatenating words from infinitely many times. e.g.:
2.2.3. Deterministic vs. nondeterministic
- What’s the difference?
-
Nondeterministic (NFA, nondetereministic finite automaton) 在某个state
,给定一个word ,可能到达 ,也可能到达 E.g.: 从状态0出发,执行word a,可能到状态1或状态3 -
Determinization
-
任意NFA均可转化为DFA(?) For any nondeterministic automaton with regualr acceptance condition, there exists a deterministic automaton with regular acceptance condition accepting the exact set of words
-
Non-deterministic Buchi are more expressive than deterministic Buchi. non-DBA的Language不能全部被DBA接受
- There exist nondeterministic Buchi automata whose languages cannot be accepted by a deterministic Buchi automation
-
powerset幂集: 所有属于给定集合的子集(从空集到这个集合本身)。集合
的powerset共 个子集。 Example
If S is the set
, then the subsets of S are (also denoted { )
-
2.2.4. Fragment of LTL=DBA(?)
-
允许使用部分LTL以描述一个DBA
-
E.g.:
includes formulas that are constrcuted from:
3. Transition systems and compositions
reader_software_specification_ch_8 some related slides another related slides
3.1. Finite state transition system
- A finite state transition system TS is a tuple
: a finite set of states. : a finite set of actions. : a finite set of transitions. : a finite set of initial states. : a finite set of atomic propositions. : a labeling function.
3.2. Predecessors and successors
- a-successor of s:
- a-predecessor of s:
- A state is terminal iff
3.3. Deterministic transition system (TS)
-
两层含义
- Action-determinisitic
If
and for all , it holds that . For all actions and states, it has at most one suceessor state (至多有一个初始状态(为什么要限制 ?),并且从任意一个state执行的任意一个action最多有一个后续状态)ch. 8 - AP-determinisitic
If for all
the following conditions hold: and for all 每个AP(原子命题)至多有一个初始状态,并至多有一个后续(post)状态。需要确认?
- Action-determinisitic
If
-
Notation: for determinisitic transition function,
3.4. Interleaving of transition systems
, Transition relation is defined by and
3.5. Handshaking
, Transition relation is defined by - If
, , and , then - If
, and , then - If
, and , then
- If
3.6. Transition system and LTL specification
???
4. LTL verification of transition systems
4.1. Basic properties:
-
Invariant: 一些状态恒为true/false(一些条件应始终成立/不成立)??
Example
十字路口交通灯,AP南北向为绿灯
,AP东西向为绿灯 ,记绿灯为g,红灯为r。 即为一系列红绿灯状态的组合。如:从任意一个时刻开始,记录一段时间(任意长时间)路口红绿灯的变化: (rg) —> (rr) —> (gr) —> (rr) —> (rg) —> …(红绿灯交替,不存在同时同时绿灯,变灯时可能出现同时红灯),因为 -Regular中包含任意有限长度的组合。 当交通灯的规则为 ,即不会同时出现绿灯/始终只有一红一绿或两红时,将任意 中的元素代入交通灯规则,都为true(?),所以对此规则是满足invariant的 -
Safety: 一些状态恒为false(确保一些情况不会发生),e.g.: 路口两个方向不会同时为绿灯。
-
Liveness:一些状态在一定情况下会发生,e.g.:路口会变绿灯。
4.2. Product of TS and Automaton
- Transition system
, automaton
Transition system | Automaton | |
---|---|---|
State | ||
Transition | ||
Initial | ||
(the same |
待进一步检查的StackExchange上的Example
Ref: StackExchange
-
首先找出新的initial set:
,所以有 ,新的initial set为 -
新的transition的定义为
也就是对于TS中的 进行一次状态转移(状态转移的label 通常被忽略),到达新的状态 ,用于表示状态 的label作为自动机的输入,驱动自动机从状态 转移到其下一状态 。 中 的下一状态为 ,标签为 。 在接受 作为输入后转移至 ,所以 的后续状态为 -
后续计算为:
i note 0 1 2
3
4
???
ch 4 p166, figure 4.6
German trafic light system (Principles of model checking, chapter 4, p162, p166):
- Traffic light example (bad prefix: p112, traffic light example: p113)
-
A safety property for a traffic light常见的交通灯的安全属性:
- 至少有一个灯是亮着的
The bad prefixes: finite words contain . A minimal bad prefix在执行完一个有限长度的word时灯都不亮 - 不会同时亮两盏灯
Bad prefixes: words containing sets such as {red, green}, {red, yellow}, and so on. A minimal bad prefixes ends with such sets. 在一个有限长度的word执行完后有两个或两个以上的灯亮
- 至少有一个灯是亮着的
-
假设
, /{ }为green,并且只保证以下的安全属性(上述两种情况中第一种由现在假设的AP的特性保证:红黄灯不亮时绿灯必亮;忽略第二种,即红黄灯可以同时亮,但是绿灯不会和其它灯同时亮) ,包括四个input symbols , , ,-
◎表示终结态
-
红绿灯应满足的条件:在变红灯之前应有一段黄灯 例如不正确的words:{ } {red}。绿灯后立刻红灯
-
对应的finite automaton for the minimal bad prefixes of a regular safety property. (若设计一个NFA,接受minimal bad prefixes)(P113,P162) 原书p113图3.9有误,参见errata (2010 July)。 从q1到q1的yellow包括了words:
和 从q1到q0的¬yellow包括words: 和Here, ¬yellow should be read as either
or {red}.从q0到q1的yellow∧¬red即
从q0到q0为¬red∧¬yellow,即 从q0到qF的red包括了words: 和
-
-
German traffic light (GermanTrLight) P166
-
TS: four states with the usual transitions
- red -> red+yellow, 2) red+yellow -> green, 3) green -> yellow, 4) yellow -> red
(note relevant, omitted) Label: L(red)={red}, L(yellow)={yellow}, L(green)=
=L(red+yellow).
Transition system Automaton State : {red, red+yellow, green, yellow} :
q0: {{ }1,{red}}
q1: — {{yellow},{yellow,red}} : ActionTransition Initial : {red,yellow} : {00, 01,10,11} : Input symbols(the same ) :the set of accepting state - red -> red+yellow, 2) red+yellow -> green, 3) green -> yellow, 4) yellow -> red
(note relevant, omitted) Label: L(red)={red}, L(yellow)={yellow}, L(green)=
-
原书(“Principles of model checking”)在P113及P166页对safety的条件叙述不一致,GermanTrLight允许同时出现red+yellow,但是在第三章中不允许出现。解决方案: 1. 将TS中red->red/yellow改为red->yellow。将red+yellow视为不安全状态(ref: Another traffic light example,slides 12) 2. 修改NFA,将q0->q1的输入改为
,将q0->qF的输入改为 ,这样 不会进入终态(下图采用这种解决方案,注意NFA与上面的图的区别) 3. 修改NFA,将q0->q0的输入改为 ,相乘后
1.Note: { } stands for green
-
首先找出新的initial set:
,所以有 ,新的initial set为 -
新的transition的定义为
也就是对于TS中的 进行一次状态转移(状态转移的label 通常被忽略),到达新的状态 ,用于表示状态 的label作为自动机的输入,驱动自动机从状态 转移到其下一状态 。 中 的下一状态为 ,标签为 。 在接受 作为输入后转移至 ,所以 的后续状态为 -
后续计算为:
i note 0 1 2 3 back to
-
-
5. Probabilistic modeling checking with Markov Decision Processes
value function, value iteration, Bellman optimality equation, Q-function, asychronous value iteration
- Linear programming formulation
转化成线性规划问题
. where is a probability distribution over ** the contraction is monotonic? What does it mean?** - The dual problem对偶问题
6. Reactive synthesis
one-shot或repeated博弈
7. Abstraction of continuous systems
SOS: sum of squares